5.6 - Inverse of a Function

1 of 13

Warmup - Find the inverse and the inverse's domain and range

$$1. f(x) = \frac{2}{3+x}$$

$$f^{-1}(x) = \frac{2 - 3x}{x}$$
; $x \neq 0$; $y \neq -3$

$$2. f(x) = \frac{3x}{x+2}$$

$$f^{-1}(x) = \frac{-2x}{x-3}$$
; $x \neq 3$; $y \neq -2$

$$3. f(x) = \frac{2x}{3x - 1}$$

$$f^{-1}(x) = \frac{x}{3x - 2}; \ x \neq \frac{2}{3}; \ y \neq \frac{1}{3}$$

$$4. f(x) = \frac{3x + 4}{2x - 3}$$

$$f^{-1}(x) = \frac{3x+4}{2x-3}; \ x \neq \frac{3}{2}; \ y \neq \frac{3}{2}$$

$$5. f(x) = \frac{2x+3}{x+2}$$

$$f^{-1}(x) = \frac{-2x+3}{x-2}; \ x \neq 2; \ y \neq -2$$

Direct and Inverse Variation

2 of 13

$$y = mx + b \qquad y = kx$$

$$y = 2x - 5 \qquad \text{"wyarion}$$

$$y = kx$$

y = 2x - 5 "y varies directly as x" $20 = \frac{4}{5}x$

y = 12 when x = 15

$$12 = k(15)$$

$$k = \frac{12}{15} = \frac{4}{5}$$

Find x when y = 20

$$20 = \frac{4}{5}x$$

$$\frac{5}{4} \cdot 20 = \frac{4}{5}x \cdot \frac{5}{4}$$

$$25 = x$$

Direct and Inverse Variation

3 of 13

$$y = mx + b$$
 $y = kx$
 $y = 2x - 5$ "y varies

$$y = kx$$

"y varies directly as x"

$$y = 12 \text{ when } x = 15$$

$$12 = k(15)$$

$$k = \frac{12}{15} = \frac{4}{5}$$

Find x when y = 20

$$20 = \frac{4}{5}x$$

$$\frac{5}{4} \cdot 20 = \frac{4}{5}x \cdot \frac{5}{4}$$

$$25 = x$$

1) y varies directly as x and y = 12 when x = 8Find x, when y = 16

$$k = \frac{3}{2} \qquad \qquad x = \frac{32}{3}$$

2) y varies directly as x and y = 10 when x = 14Find y, when x = 21

$$k = \frac{5}{7} \qquad y = 15$$

Direct and Inverse Variation

4 of 13

$$y = \frac{k}{x}$$

"y varies inversely as x"

$$y = 3$$
 when $x = 4$

$$3 = \frac{k}{4}$$

$$k = 12$$

Find x when y = 36

$$36 = \frac{12}{x}$$

$$x = \frac{12}{36} = \frac{1}{3}$$

Direct and Inverse Variation

5 of 13

$$y = \frac{k}{x}$$

"y varies inversely as x"

$$y = 3$$
 when $x = 4$

$$3 = \frac{k}{4}$$

$$k = 12$$

Find x when y = 36

$$36 = \frac{12}{x}$$

$$x = \frac{12}{36} = \frac{1}{3}$$

1) y varies inversely as x and y = 2 when x = 8 Find x, when y = 8

$$k = 16$$
 $x = 2$

2) y varies inversely as x and $y = \frac{2}{3}$ when x = 2 Find y, when x = 6

$$k = \frac{4}{3} \qquad y = \frac{2}{9}$$

7.2 - Graphing Rational Functions

$$f(x) = \frac{1}{x}$$

$$f(x) = \frac{1}{x-2} + 3$$

7.2 - Graphing Rational Functions

Graph the functions

1.
$$f(x) = \frac{1}{x+3} - 2$$
 2. $f(x) = \frac{1}{-x+1} + 3$ 3. $f(x) = \frac{x+1}{x-1} + 3$

2.
$$f(x) = \frac{1}{-x+1} + 3$$

3.
$$f(x) = \frac{x+1}{x-1} + 3$$

7.2 - Graphing Rational Functions

Graph the functions

$$f(x) = \frac{1}{x^2}$$

$$f(x) = \frac{1}{x^3}$$

Standard Equation for a Circle

9 of 13

Distance Formula

$$d = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$$

Substitution from diagram

$$r = \sqrt{(x-h)^2 + (y-k)^2}$$

Square each side

$$r^2 = (x-h)^2 + (y-k)^2$$

Standard Equation for a Circle

$$r^2 = (x-h)^2 + (y-k)^2$$

Find the equation of the circle

1.
$$r = 3$$
, $C(3, -4)$

$$(x-3)^2 + (y+4)^2 = 9$$

2.
$$r = 2\sqrt{3}$$
, $C(-2, 3)$

2.
$$r = 2\sqrt{3}$$
, $C(-2, 3)$ $(x+2)^2 + (y-3)^2 = 12$

3.
$$r = 5\sqrt{2}$$
, $C(0, -5)$ $x^2 + (y+5)^2 = 50$

$$x^2 + (y+5)^2 = 50$$

Find the radius and center

$$x^{2} + y^{2} - 12x - 16y + 84 = 0$$

$$x^{2} - 12x + y^{2} - 16y = -84$$

$$(x^{2} - 12x + 36) + (y^{2} - 16y + 64) = -84 + 100$$

$$(x - 6)^{2} + (y - 8)^{2} = 16$$

$$r = 4, C(6, 8)$$

1.
$$x^2 + y^2 - 18x - 18y + 53 = 0$$
 $r = \sqrt{109}, C(9, 9)$

2.
$$x^2 + y^2 - 4x = 9$$
 $r = \sqrt{13}, C(2, 0)$

Find the equation of the circle with center C(2, 4) 12 of 13 and the point (6, -3) on the circle.

$$(x-2)^2 + (y-4)^2 = 65$$

Graph the circle.

$$9 = (x+3)^2 + (y-2)^2$$

1.
$$(x-1)^2 + (y+2)^2 = 49$$

2.
$$25 = (x-2)^2 + y^2$$

3.
$$6 = (x+1)^2 + (y-1)^2 - 30$$

